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1.0 SUMMARY

i This document constitutes the final report-under Contract tIDA903-80-

C-0498, DARPA Order No. 3984,con research in efficient numerical methods for
two-dimensional VLSI process modeling. The major output of this work is
embodied in the computer code MEMBRE (fqriltidimensional fficient oving

SBoundary Redistribution) and the associated user's manual, which was published

. as the appendix to semi-annual technical report No. 3 under this contract.
'-)This code predicts the two-dimensional dopant profiles which evolve during

oxidation and drive-in, including those effects arising from formation of the

bird's beak oxide profile and from concentration dependence of the diffusivity

at high doping levels. Typical CPU timet oWr complete redistribution pro-

cess, involving several thermal cycles, are found to range from two to ten

minutes on the IBM 3033.

In the final phase of the contract, modifications have been intro-
duced in the basic code to increase the speed of solution for the more diffi-

cult cases (e.g., arsenic drive-in). A factor of two reduction in CPU time

was found to be achievable without deterioration in solution accuracy through

the use of nonuniform spatial grids.

MEMBRE has been made available on tape to the U.S. integrated cir-

cuits comunity in the form of a FORTRAN program executable on the IBM 3033.

It contains the basic input/output routines from Stanford's one-dimensional
process code SUPREN, modified to deal with to-dimensional process data. Its

capabilities have been described in presentations at two technical meetings1,2

and in an article to appear in the new journal COWEL.3 Eight requests for

the code from integrated circuit manufacturers and researchers in the U.S.

have been processed to date.

• 1.1 Task Objectives

'" The overall objective of this program has been to develop fast and

accurate methods for computer modeling of the two-dimensional spread of
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dopants and other defects during VLSI circuit fabrication. Our goals for the

first year were to demonstrate a fast algorithm for calculating nonlinear dif-

fusion of a single dopant during nonuniform oxide growth, and to provide this

algorithm in a form suitable for incorporation into a general process simu-

, lator such as Stanford's SUPREM. These goals have been accomplished.

The specific objectives for the second year included:

1. Effective transfer of the basic algorithm to the integrated

circuits community;

2. Extension of the code to treat multiple interacting species and

three-dimensional redistribution; and

3. Exploration of the computational requirements posed by better

physical models for the underlying processes of chemical reac-

tion and defect generation and migration.

1.2 Technical Problem

The fabrication of VLSI devices requires production of features of

submicron size and separation. Electrical characteristics such as threshold

and punchthrough voltages will be sensitive to dopant spread into critical

areas adjacent to the original features. Experimental control of this spread-

ing, without guidance from accurate computer modeling, will be costly,

tedious, and time-consuming. However, the use of standard numerical methods

to achieve an adequate modeling capability is also costly and time-

consuming. One should therefore seek advanced methods, drawn from areas such

as fluid dynamics, where considerable effort and ingenuity have been expended

in recent years to develop fast and accurate solvers for the characterization

of multidimensional, time-dependent phenomena.

2
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1.3 General Methodology

Based on our own ongoing research in computational nonlinear aero-
dynamics, we identified several promising approaches to the development of a
fast solver for two-dimensional diffusion problems. After a preliminary

screening, a few of these were selected for adaptation to the problem of
dopant spread during oxidation or annealing. These algorithms were tested for

speed and accuracy on the problem of nonlinear dopant diffusion into the

channel region of a MOSFET, as well as on simpler problems for which the
actual dopant profiles could be accurately obtained by other means.

The algorithm finally selected for further development provided not
only exceptional speed, but also a natural extendability to interacting defect

species and three-dimensional diffusion.

1.4 Technical Results

The specific improvements in MEMBRE accomplished during the final
phase of this contract are described in Section 2 of this report. They
include a technique for clustering grid points in regions of large spatial
gradient (nonuniform gridding) and optimization of the code for execution on

the Cray-1 computer, which has become generally available for engineering cal-
* culations during the past year.

1.5 Important Findings and Conclusions

We restate here the conclusions presented in semiannual technical

report No. 3, as they provide an appropriate summary for the total contract
effort. The speed with which MEMBRE can predict the effect of process condi-

tions on 2-D dopant spread should make the code a useful tool in the Interac-
tive design of VLSI fabrication processes. Many of the most common features
in MOSFET fabrication fall within the modeling capabilities of the present

code. However, it should be remembered that this code is intended only as a

demonstration of 2-0 modeling capabilities. It Is not a complete process sim-
ulator, nor has it been optimized for its present use. Rather, it is pre-

3
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sented in a format designed to encourage adaptation and extension. The basic

algorithm, whose software implementation is included in MEMBRE, is capable of
solving problems of much greater complexity.

1.6 Implications for Further Research

The development of efficient numerical methods for the various phases

of VLSI design is an important goal that is partially realized in MEMBRE.

Achieving comparable speed in the computation of device electrical character-

" istics and circuit transient behavior appears more difficult, based on the

available numerical algorithms. Researchers active in this area may benefit

"- from an investigation of the applicability of the ideas underlying the fast

solver in MEMBRE to their problems.

"44
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2.0 PROGRESS ON TWO-DIMENSIONAL PROCESS MODELING

Two major developments were accomplished during the last reporting

period: (1) The computer code MEMBRE was modified to allow for a variable

spatial grid, (2) the program was vectorized and converted for execution on

the Cray-i computer. The variable grid feature is very important for the

redistribution of arsenic implants, which usually have large gradients over

short distances.

The computational rectangle is now covered by a nonuniform, arbitrary

grid with coordinates (Ejnj). Spatial derivatives are discretized using the

following approximations:

.i+1 - ti-1

L [OIN) i-ij 1-1 1+1 Nti D /2,J

SN 1

- "-1/2,j

__2 N iJtl N ii
-L-CO(N) a_'3 ,- - Njo j nJ+] nj. I  nj+l. nj ,+1'

Nl- Nt 1 Dt

nj - nj_ 1  ,J-1/2

i!0(N)N 0 (jN , N- " 0(.j-1 (N+ -" NiIJI)[Dr(N) ]t "+.~ i[IJl "~,- -IJ_

5
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where Nij = N(9i,njT), Di±IIZ,j = D[(Ni+,j + Nij)/2], Dij = D(Nij), etc. As

before, D(N) represents a nonlinear concentration-dependent diffusivity. In

order to incorporate the above difference equations into the original uniform

code, modifications were required in the following subroutines: ASET, DIFFUN,

INIT, LDNXII, LOADDX, LOADDY, LOADJX, LOADJY, LOADNX, LODNYX, MAIN, OUTPT, and

UFCT. Much of the symmetry present in the uniform grid code is no longer

available; however, some computational savings may still be made. For

example, if the FORTRAN variables DSAVE(I) and XISEP(I) represent
::iN N - t1,j D

*: DSAVE(I) --N11,-:': -1 / ,
"-t:

and

XISEP(l) = 2/(4i+I - Fi)

for any fixed j, then

a - [D(N) aJ - XISEP(I) * (DSAVE(I+1) -DSAVE(I))

Most of the algorithms in MEMBRE vectorized automatically when using

the Cray-1 compiler. However, two subroutines, LOADDX and LOADDY, make

millions of calls to the external diffusivity function D(N). If this function

is included as a statement function in LOADOX and LOADDY, a factor of two

improvement on execution can be obtained. Below are the new listings of these

subroutines on the Cray-1 for the nonuniform code.

Presently, the variable grid is loaded using FORTRAN statements in

the MAIN program. Eventually, the SUPREM input subroutines will be modified

to allow for a variable grid input from a new GRID card.

6
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SUBROUTINE LOADDX (J,Y,DSAVE)

C THIS SUBROUTINE COMPUTES THE DISCRETIZED DIFFERENCE EQUATION IN

C THE X-DIRECTION USING THE METHOD OF LINES

IMPLICIT REAL*8(A-H,O-Z)

COMMON/PARMl/NXNXP1,NYNYP,NXM,JB1,JB2,JB1P1,JB2M1

COMMON/PARM2/RDX2 ,RDY2,RHDX2 ,RHDY2,R2DX ,R4DXDYR2DY

COMMOt4/PARM3/BETA,DBETA1 ,DBETA2 ,DBETA3,NI ,HALF41

COMMON/SRDX2/SRDX2 (1)

DIMENSION DSAVE(1),Y(1)

D(AB) = DBETAI*(1.0+BETA*(A+B))*(1.O+A/B)

ICOL =(J-l)*NX

DO 10 I - 2,NX

ISUB =ICOL+1

ISUBMI. - ISUB-1

YH - 0.5D0*(Y(ISUB)+Y(ISUBM1))

ALPHA = HAL FNI*YH

ALPHA = CVMGT(O.O,ALPHAALPHA.LT.O.O)

TERM = SQRT(ALPHA*ALPHA+1.0)

DSAVE(I) - SRDX2(I )*D(ALPHA,TERM)*(Y( ISUB)-(ISUBM1))

*10 CONTINUE

-J DSAVE(1) - -DSAVE(2)

DSAVE(NXPI) =-DSAVE(NX)

RETURN

END

7
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SUBROUTINE LOADDY(I ,Y,DSAVE)

C THIS SUBROUTINE COMPUTES THE DISCRETIZED DIFFERLNCE EQUATION IN

C THE Y-OIRECTION USING THE METHOD OF LINES

IMPLICIT REAL*(A-H,O-Z)

* -COMMON/PARM1/NX,NXP1,NY,NYP1,NXM1,JBJB2,JBlP1,JB2M1

COMMON/PARM2/RDX2,RDY2,RHDX2,RHDY2 ,R2DX,R4DXDY ,R2DY

COMMON/PARM3/BETAIDBETA1 ,DBETA2,DBETA3 ,NI ,HAL FNI

COMMON/SRDY2/SRDY2 (1)

DIMENSION DSAVE(1),Y(1)

D(A,B) - DBETA1*(1.04.BETA*(A+B))*(1.04A/B)

ICI I-NX

1C2 =ICI-NX

0O 10 J - 2,NY
7,. YH - 5D0*(Y(NX*J+IC1)+Y(NX*J+1C2))

* ALPHA - HALFNI*YH

ALPHA = CVMGT(O.O,ALPHAALPHA.LT.O. 0)

TERM m SQRT(ALPHA*ALPHA+1.0)

DSAVE(J) - SRDY2(J)*D(ALPHA,TERM)*(Y(NX*J+IC1) -Y(NX*J+1C2))

10 CONTINUE

DSAVE(1) - -DSAVE(2)

DSAVE(NYPI) -O-SAVE(NY)

RETURN

END

C/4836A/cb
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Two cases were studied to determine the effect of the variable grid

on accuracy and execution time on the Cray-i.

Case 1. Redistribution of Boron Field Implant

* This case consists of the development of a bird's beak. The silicon

slab Is 2 u~m x 3 uam. In the uniform case AE = Ant = 0.05 uim which produces a
spatial grid of 41 x 61 points. A 150 KeV boron implant of dose 2.5 x 1012 cm2

is simulated. The first cycle consists of oxidation at a temperature of

1000'*C for 20 minutes in nitrogen. This is followed by a nonuniformly moving

boundary cycle for 160 minutes in steam at 1000*C. The actual SUPREM like

input data is listed below for the uniform grid case.

1 TITI BORON FIELD IMPLANT, E-NMOS

2 GRID DYSI=0. 05,DPTII=.05,YMAX=2,DELY=0.05,YLMX=3

3 SUBS ORNT=100,ELEM-+,CONC=5E14

*4 COMM STARTING OXIDE THICKNESS OF 0.005 UM

5 STEP TYPE=DEPOTIME=1,GRTE=0. 005

6 PLOT TOTL=Y

7 PRINT TOTL=Y,HEAD=Y
8 COMM 150 KEY BORON IMPLANT

9 STEP TYPE=IMPL,ELEM-=BDOSE=2.5E12,AKEV=150,YDEV=0.148,

10 + YWIN-1.

11 PLOT TOTL:N

12 COMM FIELD OXIDATION

13 STEP TYPE=OXID,TEMP=1000,TIME=20,MODL=NITO

14 STEP TYPEUOXID,TEMP.1000,TIMEu16O,MODL=WET0,RATO=0.3333,

15 + YPEN-0.075

16 END

The 27 x 44 nonuniform grid for this problem is as follows:

9
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XI GRID

0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500

0.4000 0.4500 0.5000 0.5500 0.6000 0.6500 0.7000 0.7500

0.8000 0.8500 0.9000 0.9500 1.0000 1.1000 1.2000 1.4000

1.6000 1.8000 2.0000

ETA GRID

0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500

0.4000 0.4500 0.5000 0.5500 0.6000 0.6500 0.7000 0.7500

0.8000 0.8500 0.9000 0.9500 1.0000 1.0500 1.1000 1.1500

1.2000 1.2500 1.3000 1.3500 1.4000 1.4500 1.5000 1.5500

1.6000 1.6500 1.7000 -1.7500 1.8000 1.9000 2.0000 2.2000

2.4000 2.6000 2.8000 3.0000

Although accuracy is essentially the same for both grids in all areas of

critical interest, CPU time is much better for the variable grid - 10.365

seconds versus 18.902 seconds. Using a cruder nonunifom grid would yield a

further improvement in speed, but accuracy would begin to deteriorate.

Case 2. Redistribution of Arsenic Source/Drain Implant

This case consists of the oxidation for 40 minutes of a very steep

40 KeY arsenic profile having a projected range (Rp) of 0.0265 and projected

and lateral standard deviations of 0.0099 and 0.0103, respectively. An

explosive type diffusion is characteristic of such problems, and a very fine

uniform grid of 51 x 61 on a silicon slab of 1.25 um x 1.5 um was required to

maintain accuracy. The initial data is listed below:

10
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1 TITL ARSENIC SOURCE/DRAIN IMPLANT, E-NMOS

2 GRID DYSI = 0.025, DPTH = 0.025, YMAX = 1.25, DELY = 0.025,

+ YLMX = 1.5

3 SUBS ORNT - 100, ELEM =+, CONC - 5E14

4 PLOT TOTL *Y, CMIN = 14, NDEC =4, WIND :2

5 PRINT TOTL = Y, HEAD = Y

6 COMM 40 KEV ARSENIC IMPLANT

7 STEP TYPE = IMPL, ELEM = AS, DOSE = 1E16, RANG = 0.0265, STDV

8 + = 0.0099, YWIN = 0.5, YDEV - 0.0103

9 COMM ARGON ANNEAL

10 STEP TYPE = OXID, TEMP = 1000, TIME = 40, MODL = NITU

11 END

The following 33 x 47 nonuniform grid produced the same quality of accuracy:

XI GRID

0.0000 0.0250 0.0500 0.0750 0.1000 0.1250 0.1500 0.1750

0.2000 0.2250 0.2500 0.2750 0.3000 0.3250 0.3500 0.3750

0.4000 0.4250 0.4500 0.4750 0.5000 0.5250 0.5500 0.5750

0.6000 0.6500 0.7000 0.7500 0.8500 0.9500 1.0500 1.1500

1.2500

ETA GRID

0.0000 0.0250 0.0500 0.0750 0.1000 0.1250 0.1500 0.1750

0.2000 0.2250 0.2500 0.2750 0.3000 0.3250 0.3500 0.3750

0.4000 0.4250 0.4500 0.4750 0.5000 0.5250 0.5500 0.5750

0.6000 0.6250 0.6500 0.6750 0.7000 0.7250 0.7500 0.7750

0.8000 0.8250 0.8500 0.8750 0.9000 0.9250 0.9500 0.9750

1.000 1.0500 1.1000 1.2000 1.3000 1.4000 1.5000

C/4836A/cb



.. .. ... Rockwell Intemational

Science Center
SC5271.12FR

Computation times were 20.091 seconds on the 33 x 47 grid and 36.008 seconds

on the 51 x 61 uniform grid. These results indicate that a factor of two

improvement in computation time can be achieved when using a nonuniform

grid. In addition, the Cray-1 is about 13 times faster than the IBM 3033.

Thus, a 26 fold improvement in computer execution time was achieved over our

previously reported data.

12
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